3-Wege Kugelhahn, vertikale Ausführung Pfeiffer-Typ BR 26v

Anwendung

Dicht schließender 3-Wege Kugelhahn aus Edelstahl für aggressive Medien, insbesondere bei hohen Anforderungen in Anlagen von Chemie und Pharmazie.

Nennweite DN 15 bis DN 100 Nenndruck PN 16/40 Temperaturen -10 bis 200 °C

Das Stellgerät besteht aus einem Edelstahl 3-Wege Kugelhahn und einem pneumatischen Schwenkantrieb, einem Handgetriebe oder einem Handhebel.

Die im Baukastensystem ausgeführten Geräte sind mit verschiedenen Zusatzteilen kombinierbar und weisen folgende besonderen Eigenschaften auf:

- BR 26v vertikale Ausführung mit L-Bohrung
- Baulänge Reihe 1 nach EN 558-1 (F1 nach DIN 3202)
- Durchgang ISO, leichte Reihe
- Anbauflansch für Antriebe nach DIN ISO 5211

Die Kugelhähne mit pneumatischem Stellantrieb können mit Stellungsregler, Magnetventilen und anderen Anbaugeräten nach VDI/VDE 3845 ausgerüstet werden.

Ausführungen

Normalausführung · Kugelhahn Pfeiffer-Typ BR 26v für Nennweite DN 15 bis 100, Nenndruck PN 16/40 wahlweise in folgenden Ausführungen:

- BR 26v · Kugelhahn mit Handhebel
- BR 26v · Kugelhahn mit Handgetriebe
- BR 26v · Kugelhahn mit pneumatischem Schwenkantrieb, wahlweise mit oder ohne Federrückstellung (Einzelheiten siehe jeweiliges Datenblatt)

Weitere Ausführungen

- 3-Wege Kugelhahn in horizontaler Ausführung mit L- oder T-Kugel
- 4-Wege Kugelhahn (optional mit Doppel-L-Kugel)
- 5/4-Wege Hahn (ab DN 25)
- metallischer Dichtsatz (mit HSB)
- angefederter Dichtsatz
- totraumminimiertes Gehäuse
- Schaltwellenverlängerung
- Filter-Reduzierstationen
- elektrischer Schwenkantrieb
- Sterilanschluss
- Heizmantel
- Spülanschlüsse
- Hochtemperaturausführung
- Andere Gehäusewerkstoffe wie Sonderaustenite, Duplexstähle, Hastelloy, Titan auf Anfrage

Bild 1 · Horizontaler 3-Wege Kugelhahn BR 26v

Wirkungsweise (Bilder 2 und 4)

Durch verschiedene Kugeldurchgänge sind horizontal und vertikal wunschgemäße Produktwege durch die jeweilige Schaltstellung realisierbar.

Legende zu Bild 2

Gehäuse
 Gehäuseflansch
 Abgangsflansch
 Kugel
 Schaltwelle
 Stopfbuchsflansch
 Dichteinheit

7 Dichteinheit 8/9 Gehäuseabdichtung 10/11 Lagerbuchse

12 Tellerfedersatz

DachmanschettenpackungZylinderschraube

15/17 Stift-/Sechskantschraube

16 Sechskantmutter

Druck-Temperatur-Diagramm

Der Einsatzbereich wird durch den Verlauf des Druck-Temperatur-Diagramms bestimmt. Die Prozessdaten und das Medium können die Werte beeinflussen. Liegen die Betriebsdaten außerhalb des Grenzbereichs fragen Sie bitte bei uns nach.

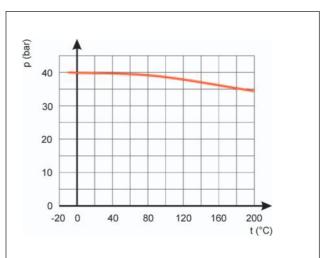


Bild 3 · Druck-Temperatur-Diagramm

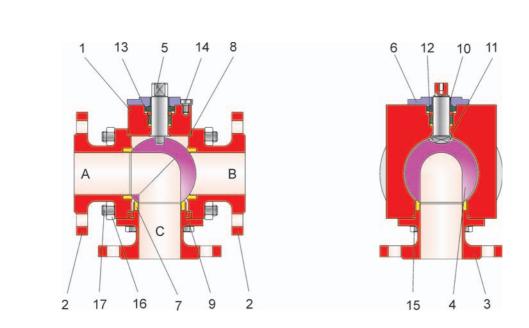


Bild 2 · Vertikaler Kugelhahn mit L-Bohrung BR 26v

2 T 9936

Bild 4 Schaltfunktionen des 3-Wege Kugelhahns BR 26v mit vertikaler L-Bohrung

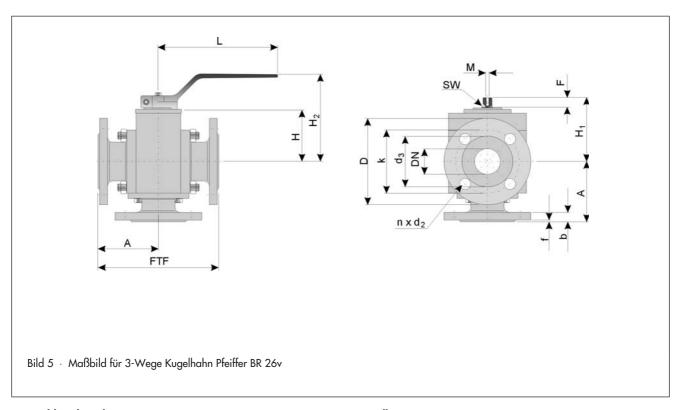
Tabelle 1 Technische Daten für Kugelhahn BR 26v

Nennweite DN		15 bis 100				
Nenndruck	PN	16/40				
Produktanschluss		Flansche nach DIN 2501 PN 16/40				
Kugelabdichtung		TFM				
Schaltwellenabdichtung		PTFE-Dachmanschettenpackung				
Temperaturbereich	Temperaturbereich −10 bis 200 °C					
Leckage nach DIN EN 12266-1		Prüfung P12, Leckrate "A"				

Tabelle 2 · Werkstoffe

Gehäuse		WN 1.4571			
Kugel		WN 1.4408/WN 1.4571			
Schaltwelle		WN 1.4462			
Dichtringe		TFM (PTFE)			
Stopfbuchspackung		PTFE-V-Ring-Packung mit Tellerfedern aus Federstahl WN 1.8159			
Lagerbuchse oben		PTFE mit 25 % Kohle			
	unten	PTFE mit 25 % Glas			
Gehäusedichtung		PTFE-weiß			

Tabelle 3 · Max. zulässige Drehmomente M_{Dmax} und erforderliche Losbrechmomente M_{DI} in Nm


Die angegebenen Losbrechmomente sind Durchschnittswerte, die im drucklosen Zustand bei 20 °C gemessen wurden. Betriebstemperatur, Medium sowie längere Einsatzdauer können Losbrech- und Drehmomente stark verändern. Die angegebenen Momente gelten für die Werkstoffe der Normalausführung nach Tabelle 2.

Nennweite DN	zulässiges Drehmoment M _{Dmax}	erforderliches Losbrechmoment M _{DI}		
15	32	12		
25	125	30		
40	250	50		
50	250	70		
80	500	120		
100	500	200		

3 T 9936

Tabelle 4 · Maße in mm und Gewichte

Nennweite	DN	15	25	40	50	80	100	
Nenndruck	PN	40				16	40	
FTF		130	160	200	230	310	350	350
A		65	80	100	115	155	175	175
D		95	115	150	165	200	220	235
b		16	18	18	20	24	20	24
k		65	85	110	125	160	180	190
n x d2		4 x 14	4 x 14	4 x 18	4 x 18	8 x 18	8 x 18	8 x 22
d3		45	68	88	102	138	158	162
f		2	2	3	3	3	3	3
Н		47,5	60	90	100	136	156	156
H1		61	79	112	122	162	182	182
F		9	14	17	17	19	19	19
М		M5	M6	M6	M6	M8	M8	M8
H2		101	112,5	151,5	161,5	187,5	195,5	195,5
L		151	155	207	207	350	350	350

Auswahl und Auslegung

- 1. Festlegen der erforderlichen Nennweite
- 2. Festlegen der Schaltfunktion
- 3. Auswahl der Armatur unter Beachtung der Tabellen 1, 2
- 4. Auswahl des Stellantriebes
- 5. Auswahl der Zusatzausstattung

Bestelltext

3-Wege Kugelhahn

Nennweite

DN

Nenndruck

PN

Schwenkantrieb

Typ

Stelldruck

Sicherheitsstellung

BR 26v

PN

Typ

Anbaugeräte Stellungsregler und/oder Grenzsignalgeber, Magnetventil

Technische Änderungen vorbehalten.

