# Pneumatische Stellventile Typ 3246-1 und Typ 3246-7 Durchgangsventil Typ 3246

Mit langem Isolierteil und Zirkulationssperre Class 150 und 300/PN 16 und 40



#### Anwendung

Durchgangsventil für Tieftemperaturanwendungen

Nennweite NPS ½ bis 10 ⋅ DN 15 bis 250
Nenndruck Class 150 und 300 ⋅ PN 16 und 40
Temperaturen -325 bis +149 °F ⋅ -196 bis +65 °C

 $\epsilon$ 

## Durchgangsventil Typ 3246 mit

- pneumatischem Antrieb Typ 3271 (Stellventil Typ 3246-1)
- pneumatischem Antrieb Typ 3277 (Stellventil Typ 3246-7) für den integrierten Anbau eines Stellungsreglers

## Ventilgehäuse aus

korrosionsfestem Stahlguss

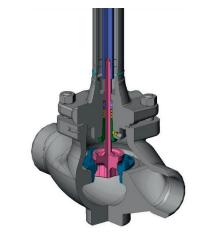
### Geräuscharmer Ventilkegel

- metallisch dichtend
- metallisch für erhöhte Anforderungen

Die im Baukastensystem ausgeführten Stellventile können mit verschiedenen Anbaugeräten ausgerüstet werden: Stellungsregler, Grenzsignalgeber, Magnetventile und andere Anbaugeräte nach DIN IEC 60534-6 und NAMUR-Empfehlung (vgl. Übersichtsblatt > T 8350).

## **Ausführung**

**Normalausführung** mit einfacher PTFE-Packung mit langem Isolierteil und Zirkulationssperre  $\cdot$  Nennweite NPS  $\frac{1}{2}$  bis 10 (DN 15 bis 250)  $\cdot$  Class 150 und 300 (PN 16 und 40)  $\cdot$  Anschluss mit Flanschen oder mit Anschweißenden


- Typ 3246-1 · mit Antrieb Typ 3271, Antriebsfläche 120 bis 2800 cm² (vgl. Typenblätter ➤ T 8310-1, ➤ T 8310-2 und ➤ T 8310-3)
- Typ 3246-7 (Bild 1) · mit Antrieb Typ 3277, Antriebsfläche 120 bis 750 cm² (vgl. Typenblatt ► T 8310-1)

# Weitere Ausführungen

- Durchgangsventil Typ 3246-1 oder Typ 3246-7 · mit langem Isolierteil und Zirkulationssperre, NPS ½ bis 8 (DN 15 bis 200), Class 600 und 900 (PN 100 und 160) · vgl. Typenblatt ► T 8046-2
- Dreiwegeventil Typ 3246-1 oder Typ 3246-7 · mit langem Isolierteil und Zirkulationssperre, NPS ½ bis 6 (DN 15 bis 150), Class 150 und 300 (PN 16 und 40) · vgl. Typenblatt ► T 8046-3
- Lochkegel · vgl. Typenblatt ► T 8086



Bild 1: Typ 3246-7 mit Zirkulationssperre, Anschweißenden, langem Isolierteil und Abdeckplatte mit Bund



**Bild 2:** Ventil Typ 3246 mit Zirkulationssperre

# Wirkungsweise

Das Ventil wird gegen die Schließrichtung des Kegels durchströmt. Der Ventilkegel bestimmt dabei den Durchflussquerschnitt. Die unten angeordnete Zirkulationssperre vermindert die Strömungseinflüsse des Mediums im Isolierteil.

## Sicherheitsstellung

Je nach Anordnung der Druckfedern im Antrieb (vgl. Typenblätter ▶ T 8310-1, ▶ T 8310-2 und ▶ T 8310-3) hat das Stellventil zwei Sicherheitsstellungen, die bei Ausfall der Hilfsenergie wirksam werden:

- Antriebsstange durch Feder ausfahrend (FA): Bei Ausfall der Hilfsenergie wird das Ventil geschlossen.
- Antriebsstange durch Feder einfahrend (FE): Bei Ausfall der Hilfsenergie wird das Ventil geöffnet.

## Differenzdrücke

Zulässige Differenzdrücke gemäß Übersichtsblatt ▶ T 8000-4.

- 2 Zwischenstück
- 8 Gewinde buch se
- 9 Kupplungsmutter
- 10 Kontermutter Feder
- 12 Scheibe
- 16 Packung
- 25 Kegelstangenverlängerung
- Dichtung Zwischenstück

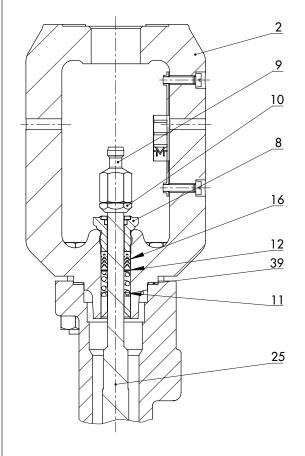



Bild 3: Zwischenstück

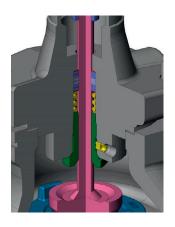



Bild 4: Zirkulationssperre und Gewindestift

## Servicehinweise · Nur für geschultes Personal

## Einbau in die Rohrleitung

Zum Einschweißen des Gehäuses in die Rohrleitung ist keine Demontage des Isolierteils erforderlich.



#### **ACHTUNG!**

An der Verbindungsstelle vom Gehäuse zum Isolierteil darf die Temperatur 65°C nicht überschreiten.

#### **Schmiermittel**

Die folgenden Bauteile vor dem Einbau bzw. Zusammenbau mit geeignetem Schmiermittel bestreichen:

- Kegelstange, Sitz und Kegel
- Gewinde der Gewindebuchse (8) am Zwischenstück (2)
- Kupplungsmutter (9) und Kupplung
- alle Teile der oberen Stopfbuchspackung (16) mit selbst nachstellender Feder (11)



## **ACHTUNG!**

Nur die obere Stopfbuchspackung schmieren. Die Packungsringe der Zirkulationssperre dürfen nicht geschmiert werden!

### Obere Stopfbuchspackung

- Obere Stopfbuchspackung (16) nur bei Undichtigkeit warten oder austauschen.
- Bei Montage Gewindebuchse (8) anziehen.
- Bei Arbeiten an der Stopfbuchspackung nur das Zwischenstück (2) demontieren. Das Isolierteil kann am Ventil montiert bleiben.

## Sitz oder Kegel

Bei Wartungsarbeiten an Sitz oder Kegel Isolierteil mit Zwischenstück (2) komplett abnehmen.

# Zirkulationssperre (Bild 4)

Anstelle einer unteren metallischen Führungsbuchse wird eine federbelastete Zirkulationssperre verwendet.

Demontage und Montage des Kegels:

- Seitlich angeordneten Gewindestift mit Innensechskant lösen.
- 2. Gewindebuchse der Zirkulationssperre lösen.

Austausch der Dichtringe:

An der Zirkulationssperre die Feder zwischen den Dichtringen und der Gewindebuchse einfügen.

# Einbau- und Bedienungsanleitung

Weitere Hinweise zur Montage des Antriebs sowie zu Einbau, Bedienung und Wartung des Ventils vgl. ► EB 8015 zum Durchgangsventil Typ 3241.

 Tabelle 1: Technische Daten für Durchgangsventil Typ 3246 mit Zirkulationssperre

| Werkstoff       |                                                 | Korrosionsfester Stahlguss<br>A 351 CF8/1.4308                         |  |  |  |  |  |
|-----------------|-------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|--|
| Nennweite       |                                                 | NPS ½10 · DN 15250                                                     |  |  |  |  |  |
| Nenndruck       |                                                 | Class 150 oder 300 · PN 16 oder 40                                     |  |  |  |  |  |
| Anschlussart    | ANSI                                            | Flansche Raised Face · Anschweißenden                                  |  |  |  |  |  |
| Anschlussart    | DIN                                             | Flansche Form B1 · Anschweißenden                                      |  |  |  |  |  |
| Sitz-Kegel-Dich | ltung                                           | metallisch dichtend · metallisch für erhöhte Anforderungen · Stellite® |  |  |  |  |  |
| Kennlinienform  |                                                 | gleichprozentig · linear · Auf/Zu                                      |  |  |  |  |  |
| Stellverhältnis |                                                 | 50 : 1 · 30 : 1 ab NPS 3 (DN 80)                                       |  |  |  |  |  |
| Temperaturber   | eiche in °C (°F) · Zulässige Betriebsdrücke ger | näß Druck-Temperatur-Diagrammen (vgl. Übersichtsblatt ▶ T 8000-2)      |  |  |  |  |  |
| Ventil mit      | PTFE-Packung                                    | −325+149 °F · −196+65 °C                                               |  |  |  |  |  |
| Leckage-Klasse  | e nach ANSI/FCI 70-2 bzw. DIN EN 60534-4        |                                                                        |  |  |  |  |  |
| Vantilland      | metallisch dichtend                             | IV                                                                     |  |  |  |  |  |
| Ventilkegel     | metallisch für erhöhte Anforderungen            | V                                                                      |  |  |  |  |  |

# Tabelle 2: Werkstoffe

| Normalausführung<br>Gehäuse und Flansche |                             | Korrosionsfester Stahlguss<br>A 351 CF8/1.4308             |
|------------------------------------------|-----------------------------|------------------------------------------------------------|
| Sitz und Kegel 1)                        | metallisch dichtend         | CrNiMo                                                     |
| Führungsbuchsen                          |                             | CrNiMo                                                     |
| Stopfbuchspackung                        | selbst nachstellend         | PTFE-Kohle V-Ring-Packung, Feder 1.4310                    |
| 7.11.                                    | NPS ½6<br>(DN 15150)        | PTFE-Seidenschnur federbelastet, Buchse 2.4360 (Monel)     |
| Zirkulationssperre                       | NPS 8 bis 10<br>(DN 200250) | PTFE-Seidenschnur federbelastet, Buchse 2.0402 (CuZn40Pb2) |
| Gehäusedichtung                          |                             | Graphit mit metallischem Träger                            |
| Isolierteil                              |                             | A182 F316/1.4401<br>A182 F316L/1.4404                      |

Sitze und metallisch dichtende Kegel auch stellitiert oder Kegel aus Vollstellit lieferbar.

# **Tabelle 3:** $C_{V^-}$ und $K_{VS^-}$ Werte

Tabelle 3.1: Übersicht

| C <sub>v</sub>  |    | 0,12 | 0,2  | 0,3  | 0,5 | 0,75 | 1,2 | 2   | 3    | 5   | 7,5 | 12 | 20   | 30  | 47  | 70   | 75 | 95   | 120 | 190  | 300  | 420  | 735  | 1150 |
|-----------------|----|------|------|------|-----|------|-----|-----|------|-----|-----|----|------|-----|-----|------|----|------|-----|------|------|------|------|------|
| K <sub>VS</sub> |    | 0,1  | 0,16 | 0,25 | 0,4 | 0,63 | 1,0 | 1,6 | 2,5  | 4,0 | 6,3 | 10 | 16   | 25  | 40  | 60   | 63 | 80   | 100 | 160  | 260  | 360  | 630  | 1000 |
| Sitz-           | in |      | 0,12 |      |     | 0,24 |     |     | 0,47 |     | 0,9 | 45 | 1,22 | 1,5 | 1,9 | 2,   | 48 | 3,   | 15  | 3,94 | 5,12 | 5,91 | 7,87 | 9,84 |
| ØD .            | mm |      | 3    |      |     | 6    |     |     | 12   |     | 2   | 4  | 31   | 38  | 48  | 6    | 3  | 8    | 0   | 100  | 130  | 150  | 200  | 250  |
| Nenn-           | in |      | 0,59 |      |     |      |     |     |      |     |     |    |      |     |     | 1,18 |    | 0,59 |     | 1,18 |      | 2,36 |      | 4,72 |
| hub             | mm |      |      |      |     |      |     |     | 15   |     |     |    |      |     |     |      | 30 | 15   |     | 30   |      | 6    | 0    | 120  |

# Tabelle 3.2: Ausführungen

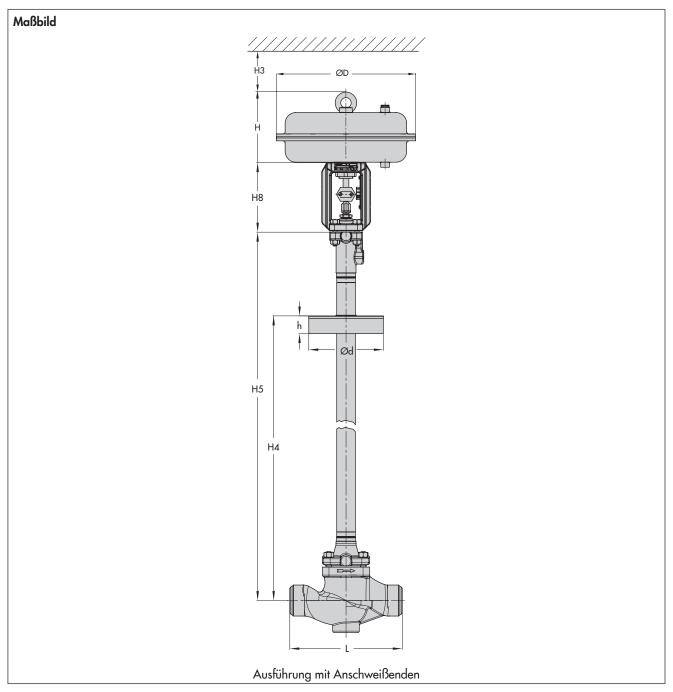
| (    | v   | 0,12 | 0,2  | 0,3  | 0,5 | 0,75 | 1,2 | 2   | 3   | 5   | 7,5 | 12 | 20 | 30 | 47 | 70 | 75 | 95 | 120 | 190 | 300 | 420 | 735 | 1150 |
|------|-----|------|------|------|-----|------|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|------|
| К    | vs  | 0,1  | 0,16 | 0,25 | 0,4 | 0,63 | 1,0 | 1,6 | 2,5 | 4,0 | 6,3 | 10 | 16 | 25 | 40 | 60 | 63 | 80 | 100 | 160 | 260 | 360 | 630 | 1000 |
| NPS  | DN  |      |      |      |     |      |     |     |     |     |     |    |    |    |    |    |    |    |     |     |     |     |     |      |
| 1/2  | 15  | •    | •    | •    | •   | •    | •   | •   | •   | •   |     |    |    |    |    |    |    |    |     |     |     |     |     |      |
| 3/4  | 20  | •    | •    | •    | •   | •    | •   | •   | •   | •   | •   |    |    |    |    |    |    |    |     |     |     |     |     |      |
| 1    | 25  | •    | •    | •    | •   | •    | •   | •   | •   | •   | •   | •  |    |    |    |    |    |    |     |     |     |     |     |      |
| 11/2 | 40  |      |      |      | •   | •    | •   | •   | •   | •   | •   | •  | •  | •  |    |    |    |    |     |     |     |     |     |      |
| 2    | 50  |      |      |      | •   | •    | •   | •   | •   | •   | •   | •  | •  | •  | •  |    |    |    |     |     |     |     |     |      |
| 3    | 80  |      |      |      |     |      |     |     |     |     |     |    |    | •  | •  | •  |    | •  |     |     |     |     |     |      |
| 4    | 100 |      |      |      |     |      |     |     |     |     |     |    |    |    |    |    | •  |    | •   | •   |     |     |     |      |
| 6    | 150 |      |      |      |     |      |     |     |     |     |     |    |    |    |    |    | •  |    | •   | •   | •   |     |     |      |
| 8    | 200 |      |      |      |     |      |     |     |     |     |     |    |    |    |    |    |    |    |     |     |     | •   | •   |      |
| 10   | 250 |      |      |      |     |      |     |     |     |     |     |    |    |    |    |    |    |    |     |     |     | •   | •   | •    |

Tabelle 4: Maße und Gewichte für Durchgangsventil Typ 3246 mit langem Isolierteil und Zirkulationssperre

Tabelle 4.1: Typ 3246 mit Anschweißenden und Abdeckplatte mit Bund

| v               |                               | NPS | 1/2  | 3/4                           | 1     | 11/2 | 2     | 3     | 4     | 6      | 8     | 10    |  |  |
|-----------------|-------------------------------|-----|------|-------------------------------|-------|------|-------|-------|-------|--------|-------|-------|--|--|
| Ventil          |                               | DN  | 15   | 20                            | 25    | 40   | 50    | 80    | 100   | 150    | 200   | 250   |  |  |
| 1 1             |                               | in  | 7,99 | 8,11                          | 8,27  | 9,88 | 11,26 | 13,27 | 15,51 | 20,0   | 24,02 | 29,61 |  |  |
| Länge L         | Class 150                     | mm  | 203  | 206                           | 210   | 251  | 286   | 337   | 394   | 508    | 610   | 752   |  |  |
| 114             | und 300/                      | in  |      |                               | 24,02 |      |       | 27    | ,01   |        | 32,99 |       |  |  |
| H4              | PN 16 und                     | mm  |      |                               | 610   |      |       | 68    | 86    |        | 838   |       |  |  |
| 115             | 40                            | in  |      |                               | 28,66 |      |       | 31,10 | 33,27 | 38,90  | 43,86 | 43,86 |  |  |
| H5              |                               | mm  |      |                               | 728   |      |       | 790   | 845   | 988    | 1091  | 1141  |  |  |
|                 | - 750                         | in  |      |                               | 6     | ,3   |       |       | 9,06  | 9,06 – |       |       |  |  |
|                 | ≤ 750                         | mm  |      |                               | 10    | 60   |       |       | 230   | 230    |       | _     |  |  |
|                 | 1000                          | in  |      | 15,55 (SB ≤ 200 <sup>1)</sup> |       |      |       |       |       |        |       |       |  |  |
| H8 in/mm        | 1400-60                       | mm  |      | $395 (SB \le 200^{1})$        |       |      |       |       |       |        |       |       |  |  |
| Class 150       | 1400-120<br>SB ≤ 200 1)       | in  | - 19 |                               |       |      |       |       |       |        |       |       |  |  |
| und 300/        |                               | mm  |      |                               |       | •    | -     |       |       |        | 50    | 03    |  |  |
| PN 16 und       | $1400-120$ SB $\leq 250^{11}$ | in  |      |                               |       |      | -     |       |       |        |       | 25,59 |  |  |
| 40 mit pneumat. |                               | mm  |      |                               |       |      | -     |       |       |        |       | 650   |  |  |
| Antrieb         | 2800                          | in  |      | 19                            | 19,8  |      |       |       |       |        |       |       |  |  |
|                 | $SB \le 200^{11}$             | mm  | -    |                               |       |      |       |       |       |        |       | 503   |  |  |
|                 | 2800                          | in  |      |                               |       |      | -     |       |       |        |       | 25,59 |  |  |
|                 | SB 250 1)                     | mm  |      |                               |       |      | -     |       |       |        |       | 650   |  |  |
|                 | Ød                            | in  |      |                               | 5,98  |      |       | 7,    | 99    |        | 10,0  |       |  |  |
| Abdeck-         | <i>1</i> 00                   | mm  |      |                               | 152   |      |       | 20    | 03    |        | 254   |       |  |  |
| platte          | h                             | in  |      |                               |       |      | 1,    | 57    |       |        |       |       |  |  |
|                 | П                             | mm  |      |                               |       |      | 4     | 10    |       |        |       |       |  |  |
| Couriebt        |                               | lbs |      | 31                            |       | 38   | 49    | 84    | 175   | 410    | 948   | 1202  |  |  |
| Gewicht, ca.    |                               | kg  |      | 14                            |       | 17   | 22    | 38    | 79    | 186    | 430   | 545   |  |  |

<sup>1)</sup> SB = Sitzbohrung


Tabelle 4.2: Pneumatische Antriebe Typ 3271 und Typ 3277

|                                                                                                                 | Antrieb -      |     | 18,6 | 27,13 | 37,2 | 54,25 | 55,03 | 108,5 | 116,25 | 155   | 217         | 217          | 434   |  |
|-----------------------------------------------------------------------------------------------------------------|----------------|-----|------|-------|------|-------|-------|-------|--------|-------|-------------|--------------|-------|--|
| Antrieb                                                                                                         |                |     | 120  | 175   | 240  | 350   | 355   | 700   | 750    | 1000  | 1400-<br>60 | 1400-<br>120 | 2800  |  |
| Ml                                                                                                              |                | in  | 6,61 | 8,5   | 9,45 | 11,02 | 11,02 | 15,35 | 15,35  | 18,19 | 20,87       | 21,02        | 28,23 |  |
| Membran-Ø[                                                                                                      | J              | mm  | 168  | 215   | 240  | 280   | 280   | 390   | 390    | 462   | 530         | 534          | 770   |  |
| Н                                                                                                               |                | in  | 2,76 | 3,07  | 2,56 | 3,23  | 4,8   | 7,87  | 8,03   | 14,06 | 11,3        | 19,3         | 24,8  |  |
| (ab 700 cm²                                                                                                     | inkl. Hebeöse) | mm  | 70   | 78    | 65   | 82    | 121   | 200   | 204    | 357   | 287         | 490          | 630   |  |
|                                                                                                                 |                |     |      | 0,    | 59   |       |       | 1,18  |        | 2,    | 36          | 4,           | 4,72  |  |
| Hub (max.)                                                                                                      |                | mm  |      | 1     | 5    |       |       | 30    |        | 6     | 0           | 12           | 20    |  |
|                                                                                                                 | T 2071         | in  |      | 4,    | 33   |       |       | 7,48  |        | 24    | ,02         | 25,59        |       |  |
| 110 1)                                                                                                          | Тур 3271       | mm  |      | 1     | 10   |       |       | 190   |        | 6     | 10          | 650          |       |  |
| H3 <sup>1)</sup>                                                                                                | T 2277         | in  |      | 4,    | 33   |       |       | 7,48  |        | -     |             |              |       |  |
|                                                                                                                 | Тур 3277       | mm  |      | 1     | 10   |       |       | 190   |        | -     |             |              |       |  |
|                                                                                                                 | T . 2071       | lbs | 6    | 13    | 11   | 18    | 33    | 49    | 79     | 176   | 154         | 385,5        | 992   |  |
| المادة | Тур 3271       | kg  | 2,5  | 6     | 5    | 8     | 15    | 22    | 36     | 80    | 70          | 175          | 450   |  |
| Gewicht                                                                                                         | T 2277         | lbs | 7    | 22    | 20   | 26    | 42    | 57    | 88     |       |             |              |       |  |
|                                                                                                                 | Тур 3277       | kg  | 3,2  | 10    | 9    | 12    | 19    | 26    | 40     |       |             |              |       |  |

<sup>1)</sup> Minimaler freier Abstand für den Ausbau des Antriebs

Tabelle 4.3: Zuordnung Ventil/Antrieb

| Nennwe | ite Ventil | Ct                 | Aurel                      |  |  |  |  |
|--------|------------|--------------------|----------------------------|--|--|--|--|
| NPS    | DN         | Stangendurchmesser | Antrieb                    |  |  |  |  |
| 1/23   | 1580       | 0,39 in (10 mm)    | 120750 cm <sup>2</sup>     |  |  |  |  |
| 46     | 100150     | 0,63 in (16 mm)    | 3501400-60 cm <sup>2</sup> |  |  |  |  |
| 810    | 200250     | 1,58 in (40 mm)    | 10002800 cm <sup>2</sup>   |  |  |  |  |



# Auswahl und Auslegung des Stellventils

- 1. Berechnung des  $C_{V}$  ( $K_{V}$ -) Werts nach IEC 60534
- 2. Auswahl von Nennweite und  $C_V$ -Wert ( $K_{VS}$ -Wert) nach Tabelle 3
- 3. Ermittlung des zulässigen Differenzdrucks ∆p gemäß Übersichtsblatt ► T 8000-4
- 4. Auswahl des Garniturwerkstoffs nach Tabelle 2
- 5. Auswahl von Anschlussart, Sitz-Kegel-Dichtung und Kennlinie nach Tabelle 1

# Folgende Angaben sind bei der Bestellung erforderlich:

Nennweite NPS.../DN ...

Nenndruck Class 150 oder 300/PN 16 oder 40

Anschlussart Flansche oder Anschweißenden

Kegel metallisch dichtend oder metallisch

für erhöhte Anforderungen

Kennlinienform gleichprozentig, linear oder Auf/Zu

Antrieb Typ 3271 oder Typ 3277 (vgl.

► T 8310-1, ► T 8310-2 oder

► T 8310-3)

Sicherheitsstellung Ventil ZU oder Ventil AUF

Durchflussmedium ...

Dichte kg/m³ oder lb/ft³
Temperatur °C oder °F

Durchfluss lbs/h oder kg/h oder cu.ft/min oder

m<sup>3</sup>/h im Norm- oder Betriebszustand

Druck  $p_1$  und  $p_2$  in bar (psi)

(Absolutdruck pabs)

jeweils bei minimalem, normalem und maximalem Durchfluss

Anbaugeräte Stellungsregler und/oder Grenzsig-

nalgeber

Hinweis: Die Temperaturgrenzen für die DIN- und ANSI-Ausführungen sind keine direkten Umrechnungswerte.

Technische Änderungen vorbehalten.

